17 research outputs found

    Learning to Refine Human Pose Estimation

    Full text link
    Multi-person pose estimation in images and videos is an important yet challenging task with many applications. Despite the large improvements in human pose estimation enabled by the development of convolutional neural networks, there still exist a lot of difficult cases where even the state-of-the-art models fail to correctly localize all body joints. This motivates the need for an additional refinement step that addresses these challenging cases and can be easily applied on top of any existing method. In this work, we introduce a pose refinement network (PoseRefiner) which takes as input both the image and a given pose estimate and learns to directly predict a refined pose by jointly reasoning about the input-output space. In order for the network to learn to refine incorrect body joint predictions, we employ a novel data augmentation scheme for training, where we model "hard" human pose cases. We evaluate our approach on four popular large-scale pose estimation benchmarks such as MPII Single- and Multi-Person Pose Estimation, PoseTrack Pose Estimation, and PoseTrack Pose Tracking, and report systematic improvement over the state of the art.Comment: To appear in CVPRW (2018). Workshop: Visual Understanding of Humans in Crowd Scene and the 2nd Look Into Person Challenge (VUHCS-LIP

    Lucid Data Dreaming for Video Object Segmentation

    Full text link
    Convolutional networks reach top quality in pixel-level video object segmentation but require a large amount of training data (1k~100k) to deliver such results. We propose a new training strategy which achieves state-of-the-art results across three evaluation datasets while using 20x~1000x less annotated data than competing methods. Our approach is suitable for both single and multiple object segmentation. Instead of using large training sets hoping to generalize across domains, we generate in-domain training data using the provided annotation on the first frame of each video to synthesize ("lucid dream") plausible future video frames. In-domain per-video training data allows us to train high quality appearance- and motion-based models, as well as tune the post-processing stage. This approach allows to reach competitive results even when training from only a single annotated frame, without ImageNet pre-training. Our results indicate that using a larger training set is not automatically better, and that for the video object segmentation task a smaller training set that is closer to the target domain is more effective. This changes the mindset regarding how many training samples and general "objectness" knowledge are required for the video object segmentation task.Comment: Accepted in International Journal of Computer Vision (IJCV

    Learning to segment in images and videos with different forms of supervision

    Get PDF
    Much progress has been made in image and video segmentation over the last years. To a large extent, the success can be attributed to the strong appearance models completely learned from data, in particular using deep learning methods. However, to perform best these methods require large representative datasets for training with expensive pixel-level annotations, which in case of videos are prohibitive to obtain. Therefore, there is a need to relax this constraint and to consider alternative forms of supervision, which are easier and cheaper to collect. In this thesis, we aim to develop algorithms for learning to segment in images and videos with different levels of supervision. First, we develop approaches for training convolutional networks with weaker forms of supervision, such as bounding boxes or image labels, for object boundary estimation and semantic/instance labelling tasks. We propose to generate pixel-level approximate groundtruth from these weaker forms of annotations to train a network, which allows to achieve high-quality results comparable to the full supervision quality without any modifications of the network architecture or the training procedure. Second, we address the problem of the excessive computational and memory costs inherent to solving video segmentation via graphs. We propose approaches to improve the runtime and memory efficiency as well as the output segmentation quality by learning from the available training data the best representation of the graph. In particular, we contribute with learning must-link constraints, the topology and edge weights of the graph as well as enhancing the graph nodes - superpixels - themselves. Third, we tackle the task of pixel-level object tracking and address the problem of the limited amount of densely annotated video data for training convolutional networks. We introduce an architecture which allows training with static images only and propose an elaborate data synthesis scheme which creates a large number of training examples close to the target domain from the given first frame mask. With the proposed techniques we show that densely annotated consequent video data is not necessary to achieve high-quality temporally coherent video segmentation results. In summary, this thesis advances the state of the art in weakly supervised image segmentation, graph-based video segmentation and pixel-level object tracking and contributes with the new ways of training convolutional networks with a limited amount of pixel-level annotated training data.In der Bild- und Video-Segmentierung wurden im Laufe der letzten Jahre große Fortschritte erzielt. Dieser Erfolg beruht weitgehend auf starken Appearance Models, die vollständig aus Daten gelernt werden, insbesondere mit Deep Learning Methoden. Für beste Performanz benötigen diese Methoden jedoch große repräsentative Datensätze für das Training mit teuren Annotationen auf Pixelebene, die bei Videos unerschwinglich sind. Deshalb ist es notwendig, diese Einschränkung zu überwinden und alternative Formen des überwachten Lernens in Erwägung zu ziehen, die einfacher und kostengünstiger zu sammeln sind. In dieser Arbeit wollen wir Algorithmen zur Segmentierung von Bildern und Videos mit verschiedenen Ebenen des überwachten Lernens entwickeln. Zunächst entwickeln wir Ansätze zum Training eines faltenden Netzwerkes (convolutional network) mit schwächeren Formen des überwachten Lernens, wie z.B. Begrenzungsrahmen oder Bildlabel, für Objektbegrenzungen und Semantik/Instanz- Klassifikationsaufgaben. Wir schlagen vor, aus diesen schwächeren Formen von Annotationen eine annähernde Ground Truth auf Pixelebene zu generieren, um ein Netzwerk zu trainieren, das hochwertige Ergebnisse ermöglicht, die qualitativ mit denen bei voll überwachtem Lernen vergleichbar sind, und dies ohne Änderung der Netzwerkarchitektur oder des Trainingsprozesses. Zweitens behandeln wir das Problem des beträchtlichen Rechenaufwands und Speicherbedarfs, das der Segmentierung von Videos mittels Graphen eigen ist. Wir schlagen Ansätze vor, um sowohl die Laufzeit und Speichereffizienz als auch die Qualität der Segmentierung zu verbessern, indem aus den verfügbaren Trainingsdaten die beste Darstellung des Graphen gelernt wird. Insbesondere leisten wir einen Beitrag zum Lernen mit must-link Bedingungen, zur Topologie und zu Kantengewichten des Graphen sowie zu verbesserten Superpixeln. Drittens gehen wir die Aufgabe des Objekt-Tracking auf Pixelebene an und befassen uns mit dem Problem der begrenzten Menge von dicht annotierten Videodaten zum Training eines faltenden Netzwerkes. Wir stellen eine Architektur vor, die das Training nur mit statischen Bildern ermöglicht, und schlagen ein aufwendiges Schema zur Datensynthese vor, das aus der gegebenen ersten Rahmenmaske eine große Anzahl von Trainingsbeispielen ähnlich der Zieldomäne schafft. Mit den vorgeschlagenen Techniken zeigen wir, dass dicht annotierte zusammenhängende Videodaten nicht erforderlich sind, um qualitativ hochwertige zeitlich kohärente Resultate der Segmentierung von Videos zu erhalten. Zusammenfassend lässt sich sagen, dass diese Arbeit den Stand der Technik in schwach überwachter Segmentierung von Bildern, graphenbasierter Segmentierung von Videos und Objekt-Tracking auf Pixelebene weiter entwickelt, und mit neuen Formen des Trainings faltender Netzwerke bei einer begrenzten Menge von annotierten Trainingsdaten auf Pixelebene einen Beitrag leistet

    Exploiting saliency for object segmentation from image level labels

    Get PDF
    There have been remarkable improvements in the semantic labelling task in the recent years. However, the state of the art methods rely on large-scale pixel-level annotations. This paper studies the problem of training a pixel-wise semantic labeller network from image-level annotations of the present object classes. Recently, it has been shown that high quality seeds indicating discriminative object regions can be obtained from image-level labels. Without additional information, obtaining the full extent of the object is an inherently ill-posed problem due to co-occurrences. We propose using a saliency model as additional information and hereby exploit prior knowledge on the object extent and image statistics. We show how to combine both information sources in order to recover 80% of the fully supervised performance - which is the new state of the art in weakly supervised training for pixel-wise semantic labelling. The code is available at https://goo.gl/KygSeb.Comment: CVPR 201

    One-Shot Synthesis of Images and Segmentation Masks

    Full text link
    Joint synthesis of images and segmentation masks with generative adversarial networks (GANs) is promising to reduce the effort needed for collecting image data with pixel-wise annotations. However, to learn high-fidelity image-mask synthesis, existing GAN approaches first need a pre-training phase requiring large amounts of image data, which limits their utilization in restricted image domains. In this work, we take a step to reduce this limitation, introducing the task of one-shot image-mask synthesis. We aim to generate diverse images and their segmentation masks given only a single labelled example, and assuming, contrary to previous models, no access to any pre-training data. To this end, inspired by the recent architectural developments of single-image GANs, we introduce our OSMIS model which enables the synthesis of segmentation masks that are precisely aligned to the generated images in the one-shot regime. Besides achieving the high fidelity of generated masks, OSMIS outperforms state-of-the-art single-image GAN models in image synthesis quality and diversity. In addition, despite not using any additional data, OSMIS demonstrates an impressive ability to serve as a source of useful data augmentation for one-shot segmentation applications, providing performance gains that are complementary to standard data augmentation techniques. Code is available at https://github.com/ boschresearch/one-shot-synthesisComment: Accepted as a conference paper at IEEE Winter Conference on Applications of Computer Vision (WACV) 202

    Generating Novel Scene Compositions from Single Images and Videos

    Full text link
    Given a large dataset for training, GANs can achieve remarkable performance for the image synthesis task. However, training GANs in extremely low data regimes remains a challenge, as overfitting often occurs, leading to memorization or training divergence. In this work, we introduce SIV-GAN, an unconditional generative model that can generate new scene compositions from a single training image or a single video clip. We propose a two-branch discriminator architecture, with content and layout branches designed to judge internal content and scene layout realism separately from each other. This discriminator design enables synthesis of visually plausible, novel compositions of a scene, with varying content and layout, while preserving the context of the original sample. Compared to previous single-image GANs, our model generates more diverse, higher quality images, while not being restricted to a single image setting. We show that SIV-GAN successfully deals with a new challenging task of learning from a single video, for which prior GAN models fail to achieve synthesis of both high quality and diversity

    Divide & Bind Your Attention for Improved Generative Semantic Nursing

    Full text link
    Emerging large-scale text-to-image generative models, e.g., Stable Diffusion (SD), have exhibited overwhelming results with high fidelity. Despite the magnificent progress, current state-of-the-art models still struggle to generate images fully adhering to the input prompt. Prior work, Attend & Excite, has introduced the concept of Generative Semantic Nursing (GSN), aiming to optimize cross-attention during inference time to better incorporate the semantics. It demonstrates promising results in generating simple prompts, e.g., ``a cat and a dog''. However, its efficacy declines when dealing with more complex prompts, and it does not explicitly address the problem of improper attribute binding. To address the challenges posed by complex prompts or scenarios involving multiple entities and to achieve improved attribute binding, we propose Divide & Bind. We introduce two novel loss objectives for GSN: a novel attendance loss and a binding loss. Our approach stands out in its ability to faithfully synthesize desired objects with improved attribute alignment from complex prompts and exhibits superior performance across multiple evaluation benchmarks. More videos and updates can be found on the project page \url{https://sites.google.com/view/divide-and-bind}.Comment: Project page: \url{https://sites.google.com/view/divide-and-bind
    corecore